The advantages and use of ceramics in medicine

G. Carl Friedrich-Schiller-Universität Jena Otto-Schott-Institut (now with JSJ Jodeit GmbH Jena)

alumina bioceramic - high-density / high-purity -

- \Rightarrow good biocombatibility
- \Rightarrow excellent corrosion resistance
- \Rightarrow high wear resistance
- ⇒ low coefficient of friction
- ⇒ very low surface roughness values
- \Rightarrow high strength
- ⇒ high fracture toughness

properties of alumina bioceramic

properties	alumina bioceramic	ISO alumina standard 6474
Al ₂ O ₃ content [wt-%]	> 99,8	≥ 99,5
density [g/cm³]	> 3,93	≥ 3,9
average grain size [µm]	3-6	< 7
hardness [HV]	2300	> 2000
compressive strength [MPa]	4500	
bending strength [MPa]	550	400
Youngs Modulus [GPa]	380	
fracture toughness [MPa*m ^{-1/2}]	5-6	

alumina bioceramic

microstructure

contact angle

clinical applications of alumina bioceramic

properties of zirconia bioceramic

properties	zirconia bioceramic	alumina bioceramic
ZrO ₂ / Al ₂ O ₃ content [wt-%]	> 97	≥ 99,8
density [g/cm³]	5,6 - 6,1	≥ 3,93
average grain size [µm]	1	3-6
hardness [HV]	1300	2300
bending strength [MPa]	1200	550
Youngs Modulus [GPa]	200	380
fracture toughness [MPa*m ^{-1/2}]	15	5 - 6

Moje zirconia implants

biotolerable bioglass-ceramics

- systems
 - ⇒ mica glass-ceramics (machinable) Bioverit® II

microstructure of mica glass-ceramics with plate like (right) and curved mica crystals (left, Bioverit®II), scanning electron micrograph

biotolerable bioglass-ceramics

- **♦** systems
 - **⇒** mica glass-ceramics (machinable)
 - **⇒** leucite glass-ceramics
 - ⇒ lithium silicate glass-ceramics
 - properties
 - ⇒ biocompatible, non-toxic
 - ⇒ high chemical resistance
 - \Rightarrow good mechanical properties
 - **♠** clinical applications
 - \Rightarrow dental restorations
 - \Rightarrow middle ear implants
 - \Rightarrow skull reconstructions

biotolerable mica bioglass-ceramic Bioverit® II

hydroxyapatite – $Ca_{10}(PO_4)_6(OH)_2$

- properties
 - ⇒ high biocompatibility
 - \Rightarrow high bone bonding ability
 - ⇒ high chemical resistance
 - ⇒ low mechanical strength

♣ clinical applications
 ⇒ bone void filler
 (nonporous, porous – coraline)
 ⇒ coatings

microstructure of a porous hydroxyapatite ceramic

hydroxyapatite – $Ca_{10}(PO_4)_6(OH)_2$

bioglass®

 \blacktriangle sytem: Na₂O-CaO-SiO₂-P₂O₅-(F⁻)

- A. Bone Bonding Boundary at 30 days or less
- B. Non Bonding, Reactivity is too low
- C. Non Bonding, Reactivity is too high
- D. Non Bonding, Non Glass-Forming

bioglass®

- properties
 - **⇒** excellent biocompatibility
 - **⇒** high bio reactivity
 - ⇒ high bone bonding ability
 - ⇒ low chemical resistance
 - ⇒ low mechanical strength
 - **♠** clinical applications
 - \Rightarrow bone void filler
 - \Rightarrow coatings
 - \Rightarrow composites
 - \Rightarrow middle ear implants
 - \Rightarrow dental implants

bioglass-ceramics

bioglass-ceramics	Ceravital®	Cerabone®	Bioverit®
System	Na ₂ O-CaO-SiO ₂ - P ₂ O ₅	MgO-CaO-SiO ₂ - P ₂ O ₅ -F ⁻	Na ₂ O-K ₂ O-MgO- Al ₂ O ₃ -CaO-SiO ₂ - P ₂ O ₅ -F
crystal phases	apatite	apatite, wollastonite	apatite mica
bone bonding ability	very high	very high	high
chemical resistance	low	high	high
mechanical strength	low	high	high

bioactive bioglass-ceramic Bioverit® I

electron-beam microprobe investigation of the intergrowth zone between bone (left) and bioglass-ceramic Bioverit® I (right)

intergrowth between bone and glassceramic Bioverit® I (scanning electron micrograph)

intergrowth between bone (yellow) and glassceramic Bioverit® I (optical micrograph)

bioglass-ceramics

- clinical applications
 - \Rightarrow bone spacer
 - \Rightarrow coatings
 - \Rightarrow composites
 - **⇒** distance-keeping implants in osteotomy
 - \Rightarrow artificial vertebras
 - \Rightarrow dental implants

glass-ceramic implants of Bioverit $^{\circ}$ I

bioresorbable bioceramics

- systems
 - ⇒ B-TCP (B-tri calcium phosphate)
 - ⇒ phosphate glasses and glass-ceramics
- **♠** properties
 - **⇒** high biocompatibility
 - **⇒** controlled resorption or biodegratation
 - **⇒** low chemical resistance
 - ⇒ poor mechanical strength
 - ♠ clinical applications(powder, porous solid, dens solid)
 - \Rightarrow bone void filler

coatings with bioactive ceramics

- * technology:
- \Rightarrow plasma spraying
- \Rightarrow sputtering
- \Rightarrow sol-gel-process
- ⇒ sintering

* requirements:

- \Rightarrow good biocompatibility, bone bonding
- \Rightarrow similar thermal expansion coefficients
- ⇒ high chemical stability
- \Rightarrow good adhesive strength of the coating
- \Rightarrow no changes of the substrates by the coating process

Bioverit® I coating on Moje zirconia prostheses

Bioverit® I coating on Moje zirconia prostheses

* results

- ⇒ good biocompatibility, bone bonding ability
- ⇒ dense and crack-free layer
- ⇒ long term stability
- \Rightarrow good adhesive strength of the coating
- ⇒ no changes of the zirconia ceramic

microstructure of the coating, scanning electron micrograph

intergrowth of coating and bone, optical photomicrograph

summary

⋉Bioceramics:

- **⇒** wide range of biological properties
- **⇒** different chemical compositions
- **⇒** various chemical and mechanical properties
- **⇒** different shape and size
- **⇒** wide range of clinical applications

Ergänzungsfolien

bioceramics – interface range

bioactive bioglass-ceramic Bioverit® I bone connection

bone connection in dependence of the time of implantation in an animal experiment – glass-ceramic Bioverit® I implants in comparison to corundum implants