The advantages and use of ceramics in medicine G. Carl Friedrich-Schiller-Universität Jena Otto-Schott-Institut (now with JSJ Jodeit GmbH Jena) # alumina bioceramic - high-density / high-purity - - \Rightarrow good biocombatibility - \Rightarrow excellent corrosion resistance - \Rightarrow high wear resistance - ⇒ low coefficient of friction - ⇒ very low surface roughness values - \Rightarrow high strength - ⇒ high fracture toughness # properties of alumina bioceramic | properties | alumina
bioceramic | ISO alumina
standard 6474 | |---|-----------------------|------------------------------| | Al ₂ O ₃ content [wt-%] | > 99,8 | ≥ 99,5 | | density [g/cm³] | > 3,93 | ≥ 3,9 | | average grain size [µm] | 3-6 | < 7 | | hardness [HV] | 2300 | > 2000 | | compressive strength [MPa] | 4500 | | | bending strength [MPa] | 550 | 400 | | Youngs Modulus [GPa] | 380 | | | fracture toughness [MPa*m ^{-1/2}] | 5-6 | | # alumina bioceramic microstructure ## contact angle # clinical applications of alumina bioceramic # properties of zirconia bioceramic | properties | zirconia
bioceramic | alumina
bioceramic | |--|------------------------|-----------------------| | ZrO ₂ / Al ₂ O ₃ content [wt-%] | > 97 | ≥ 99,8 | | density [g/cm³] | 5,6 - 6,1 | ≥ 3,93 | | average grain size [µm] | 1 | 3-6 | | hardness [HV] | 1300 | 2300 | | bending strength [MPa] | 1200 | 550 | | Youngs Modulus [GPa] | 200 | 380 | | fracture toughness [MPa*m ^{-1/2}] | 15 | 5 - 6 | # Moje zirconia implants # biotolerable bioglass-ceramics - systems - ⇒ mica glass-ceramics (machinable) Bioverit® II microstructure of mica glass-ceramics with plate like (right) and curved mica crystals (left, Bioverit®II), scanning electron micrograph # biotolerable bioglass-ceramics - **♦** systems - **⇒** mica glass-ceramics (machinable) - **⇒** leucite glass-ceramics - ⇒ lithium silicate glass-ceramics - properties - ⇒ biocompatible, non-toxic - ⇒ high chemical resistance - \Rightarrow good mechanical properties - **♠** clinical applications - \Rightarrow dental restorations - \Rightarrow middle ear implants - \Rightarrow skull reconstructions # biotolerable mica bioglass-ceramic Bioverit® II hydroxyapatite – $Ca_{10}(PO_4)_6(OH)_2$ - properties - ⇒ high biocompatibility - \Rightarrow high bone bonding ability - ⇒ high chemical resistance - ⇒ low mechanical strength ♣ clinical applications ⇒ bone void filler (nonporous, porous – coraline) ⇒ coatings microstructure of a porous hydroxyapatite ceramic hydroxyapatite – $Ca_{10}(PO_4)_6(OH)_2$ # bioglass® \blacktriangle sytem: Na₂O-CaO-SiO₂-P₂O₅-(F⁻) - A. Bone Bonding Boundary at 30 days or less - B. Non Bonding, Reactivity is too low - C. Non Bonding, Reactivity is too high - D. Non Bonding, Non Glass-Forming # **bioglass**® - properties - **⇒** excellent biocompatibility - **⇒** high bio reactivity - ⇒ high bone bonding ability - ⇒ low chemical resistance - ⇒ low mechanical strength - **♠** clinical applications - \Rightarrow bone void filler - \Rightarrow coatings - \Rightarrow composites - \Rightarrow middle ear implants - \Rightarrow dental implants # bioglass-ceramics | bioglass-ceramics | Ceravital® | Cerabone® | Bioverit® | |------------------------|---|---|---| | System | Na ₂ O-CaO-SiO ₂ -
P ₂ O ₅ | MgO-CaO-SiO ₂ -
P ₂ O ₅ -F ⁻ | Na ₂ O-K ₂ O-MgO-
Al ₂ O ₃ -CaO-SiO ₂ -
P ₂ O ₅ -F | | crystal phases | apatite | apatite,
wollastonite | apatite
mica | | bone bonding ability | very high | very high | high | | chemical resistance | low | high | high | | mechanical
strength | low | high | high | # bioactive bioglass-ceramic Bioverit® I electron-beam microprobe investigation of the intergrowth zone between bone (left) and bioglass-ceramic Bioverit® I (right) intergrowth between bone and glassceramic Bioverit® I (scanning electron micrograph) intergrowth between bone (yellow) and glassceramic Bioverit® I (optical micrograph) # bioglass-ceramics - clinical applications - \Rightarrow bone spacer - \Rightarrow coatings - \Rightarrow composites - **⇒** distance-keeping implants in osteotomy - \Rightarrow artificial vertebras - \Rightarrow dental implants glass-ceramic implants of Bioverit $^{\circ}$ I #### bioresorbable bioceramics - systems - ⇒ B-TCP (B-tri calcium phosphate) - ⇒ phosphate glasses and glass-ceramics - **♠** properties - **⇒** high biocompatibility - **⇒** controlled resorption or biodegratation - **⇒** low chemical resistance - ⇒ poor mechanical strength - ♠ clinical applications(powder, porous solid, dens solid) - \Rightarrow bone void filler ## coatings with bioactive ceramics - * technology: - \Rightarrow plasma spraying - \Rightarrow sputtering - \Rightarrow sol-gel-process - ⇒ sintering # * requirements: - \Rightarrow good biocompatibility, bone bonding - \Rightarrow similar thermal expansion coefficients - ⇒ high chemical stability - \Rightarrow good adhesive strength of the coating - \Rightarrow no changes of the substrates by the coating process # Bioverit® I coating on Moje zirconia prostheses # Bioverit® I coating on Moje zirconia prostheses #### * results - ⇒ good biocompatibility, bone bonding ability - ⇒ dense and crack-free layer - ⇒ long term stability - \Rightarrow good adhesive strength of the coating - ⇒ no changes of the zirconia ceramic microstructure of the coating, scanning electron micrograph intergrowth of coating and bone, optical photomicrograph # **summary** #### **⋉**Bioceramics: - **⇒** wide range of biological properties - **⇒** different chemical compositions - **⇒** various chemical and mechanical properties - **⇒** different shape and size - **⇒** wide range of clinical applications # Ergänzungsfolien # bioceramics – interface range # bioactive bioglass-ceramic Bioverit® I bone connection bone connection in dependence of the time of implantation in an animal experiment – glass-ceramic Bioverit® I implants in comparison to corundum implants